A Survey of Symbolic Execution and Its Hybrid
Extensions in Real-World Applications

Paper review for CS 477 Formal Software Development Methods course project

Erkai Yu
erkaiyu2 @illinois.edu

Abstract—Symbolic execution is a powerful program analysis
technique used for automated test generation, bug finding, and
vulnerability detection. While the idea dates back to the 1970s,
recent developments have led to practical applications, particu-
larly when symbolic execution is combined with other techniques
like fuzzing and dynamic analysis. This paper reviews the
foundational works in symbolic execution and explores state-of-
the-art hybrid strategies, discussing their strengths, limitations,
and real-world impact.

Index Terms—symbolic execution, fuzzing

I. INTRODUCTION

Symbolic execution has emerged as a cornerstone in the
field of program analysis, enabling systematic reasoning about
program behavior by treating program inputs as symbolic
variables rather than concrete values. This abstraction allows
a symbolic executor to explore multiple execution paths si-
multaneously, making it a compelling tool for detecting bugs,
generating test cases, and uncovering security vulnerabilities.
Since its inception in the late 1970s [1], [2], symbolic execu-
tion has evolved significantly—from a theoretical concept into
a practical technique deployed in modern software engineering
workflows.

Despite its theoretical appeal, early implementations of
symbolic execution faced significant scalability challenges due
to path explosion, constraint solving overhead, and limited
support for complex language features or real-world programs.
However, the last two decades have witnessed a resurgence of
interest, driven by advances in constraint solvers, improve-
ments in program instrumentation, and the rise of hybrid
analysis approaches that combine symbolic execution with
techniques such as fuzzing, concrete execution, and static
analysis.

Today, symbolic execution plays a vital role in both aca-
demic research and industry. Tools like KLEE [3], SAGE
[11], and angr [12] have been successfully applied to large-
scale software systems, demonstrating its effectiveness in
uncovering subtle bugs and security flaws. Furthermore, the
integration of symbolic execution into CI pipelines and au-
tomated vulnerability discovery systems reflects its growing
real-world relevance.

This paper surveys the development of symbolic execution
from its classical formulations to its integration in state-of-
the-art hybrid analysis tools. The paper mainly focuses on
analyzing the fundamental problems faced by symbolic execu-

tion and explaining how some modern integration of symbolic
execution with concrete execution techniques handles these
problems.

A. Problems with Symbolic Execution

The core idea of symbolic execution is to represent certain
variables in a program symbolically instead of assigning them
concrete values. By combining this with constraint solving at
branch points, symbolic execution can efficiently identify valid
inputs that follow specific execution paths.

Although symbolic execution is theoretically efficient, its
application to real-world software testing encounters several
challenges. According to a survey [10] on symbolic execution,
these challenges can be categorized into the following four
types.

1) Memory: Symbolic execution struggles with accurately
modeling memory when programs manipulate pointers, arrays,
or complex data structures. This challenge arises not only
from symbolic data values but also from symbolic memory
addresses, making precise tracking and reasoning difficult.

2) Environment: Interactions with external code, such as
library or system calls, can introduce side effects that influ-
ence program behavior. Symbolically modeling all possible
outcomes of these interactions is often impractical, leading to
incomplete or inaccurate analysis.

3) State space explosion: Symbolic execution faces a com-
binatorial explosion of execution paths, especially in the
presence of constructs like loops and conditionals. This expo-
nential growth in possible states makes it infeasible to explore
all paths within reasonable time or computational resources.

4) Constraint solving: While modern SMT solvers can han-
dle many complex constraints, symbolic execution is hindered
by the difficulty of solving certain classes of constraints, such
as those involving non-linear arithmetic or complex logic,
which can severely impact performance and completeness.

B. Paper Structure

This paper presents a review on papers related to applying
symbolic execution to real-world application testing. It focuses
on how these papers attempt to solve the four critical problems
with symbolic execution.

Concolic execution is an extension of symbolic execution,
which merges concrete and symbolic execution techniques.
Section II reviews some of the early work in this area. A more

recent development involves integrating concolic execution
with fuzzing, which is named hybrid-fuzing, is explored in
detail in Section III. Finally, Section IV summarizes the
discussed techniques and outlines the specific problems each
one addresses. Section V presents some future directions
related to this topic.

II. EARLIER WORKS ON CONCOLIC EXECUTION

Concolic execution (short for concrete + symbolic exe-
cution) is a program analysis technique that systematically
explores program paths by combining concrete execution with
symbolic reasoning. In this hybrid approach, the program is
executed with concrete inputs while simultaneously tracking
symbolic expressions that represent the behavior of the pro-
gram over all possible inputs. This enables the generation of
new inputs to explore alternative execution paths by negating
symbolic constraints. Figure 1 illustrates the idea of concolic
execution.

concolic

Fig. 1. Concrete and abstract execution machine models [10].

Notable tools and foundational work in this area include
DART [5], CUTE [4], EXE [6], and KLEE [3].

A. DART

DART [5] mainly focused on automatically testing software.
In order to realize automate unit testing of software, three main
techniques were presented:

1) Automated extraction of the interface of a program
with its external environment using static source-code
parsing.

2) Automatic generation of a test driver for this interface
that performs random testing to simulate the most gen-
eral environment the program can operate in.

3) Dynamic analysis of how the program behaves under
random testing and automatic generation of new test
inputs to direct systematically the execution along al-
ternative program paths.

The major strength of DART is that it can perform completely
automated tests on any program that compiles. DART is able
to dynamically gather knowledge about the execution of the
program in a directed search.

Starting with a random input, a DART-instrumented pro-
gram calculates during each execution an input vector for
the next execution. This vector contains values that are the
solution of symbolic constraints gathered from predicates in
branch statements during the previous execution. The new
input vector attempts to force the execution of the program
through a new path. By repeating this process, a directed

search attempts to force the program to sweep through all its
feasible execution paths. Such way of depth-first searching
helps identifying specific execution paths and reduces the
chance of path explosion.

For memory modeling, DART represents symbolic variables
with their memory addresses, these variables are initialized as
NULL or with a random value. For interaction with the en-
vironment, DART deems as foreign interfaces all the external
variables and functions referenced in a C program along with
the arguments for a top-level function. External functions are
simulated by nondeterministically returning any value of their
specified return type.

B. CUTE

CUTE [4] focuses on resolving the issue with symbolic
execution on complex data structures. CUTE uses memory
graph as inputs. This approach represents inputs for the unit
test using a logical input map that represents all inputs,
including memory graphs, as a collection of scalar symbolic
variables and then to build constraints on these inputs by
symbolically executing the code under test.

An important contribution of CUTE is the idea of separating
pointer constraints from integer constraints, which is motivated
by the fact that pointer constraints are much more difficult to
represent than integer constraints.

typedef struct cell {

int v; p x
struct cell *next;

i Input 1: NULL .

} cell; e 236

int p NULL

f(int v) { X
return 2%v + 1; Input 2: g1y M

} ." .

. NULL
int
testme(cell »p, int x) {
if (x > 0)
if (p != NULL)
if (f(x) == p->v)
if (p->next == p)
ERROR;
return 0;

}

P - X
™ x

Fig. 2. Example C code and inputs that CUTE generates for testing the
function testme [4].

As an example shown in Figure 2, CUTE first nonrandomly
generates NULL for p and randomly generates 236 for x,
respectively. Incrementally, CUTE assigns concrete values to
replace the symbolic variables by solving the path constraints.

CUTE shares many design choices with DART. For exam-
ple, both attempt to initialize nondeterministic variables with
NULL or random values. For path searching, they both use
depth-first search. Moreover, the constraint solver used by both
concolic execution engines is lp_solve.

C. EXE

EXE [6] proposes many optimization on symbolic execu-
tion, aiming for a higher code coverage during tests.

EXE models each symbolic data block as an array of 8-bit
bitvectors. The key advantage of using bitvectors is that, much
like the C memory blocks they represent, they are effectively
untyped. This untyped nature makes it straightforward to
express constraints involving the same memory in multiple
ways. Each memory read introduces constraints based on the
read’s static type (e.g., int, unsigned, etc.), but these types are
not maintained beyond that point.

Aside from the optimization on fast array constraints, EXE
also features the following optimizations:

1) Constraint caching: The result of satisfiability queries

are cached and managed by a server process for multiple
EXE processes.

2) Constraint independence optimization: The most im-
portant optimization by EXE. Treat constraints with
disjoint set of operands independently so that the cost
of solving satisfiability reduces and more cache hits
become possible.

3) Search heuristics: By default, EXE uses depth-first
search when forking a branch. To overcome the problem
with search stuck in a loop, EXE proposes a heuristic
using a mixture of best-first and depth-first search, which
significantly reduces the cost of search time.

1 : #include <assert.h>

2 : int main(void) {

3: unsignedi t, a[4] ={1, 3,5 2}

4 : make_symbolic(&i);

5. if(i >= 4)

6 : exit(0);

7 // cast + symbolic offset + symbolic mutation
8: char *p = (char ¥)a + i * 4;

9: *p=7*p —1; // Just modifies one byte!

11: // ERROR: EXE catches potential overflow i=2

12: t = a[*p];
13: // At this point i /= 2.
14

15: // ERROR: EXE catches div by 0 when i = 0.
16: t =t / ali];
17: // At this point: ¢ I= 0 &6 ¢ I= 2.

19: // EXE determines that neither assert fires.
20 if(t == 2)
21: assert(i == 1);

22: else
23: assert(i == 3);
24: }

Fig. 3. A contrived, but complete C program (simple.c) that generates five
test cases when run under EXE [6].

Figure 3 shows an example of a C program used by EXE
to generate test cases. A limitation of EXE is that it focuses
on solving constraints on integers and doesn’t generate it on
all real-world data types.

D. KLEE

KLEE [3] leverages lessons learned from EXE. Specifically,
KLEE presents several optimizations on multiple aspects, and
a better support for emulating the external environment.

One notable contribution by KLEE is its use of LLVM
IR for constraint generation, making use of LLVM IR makes
it much easier to generate constraints and perform symbolic
execution on the granularity of basic blocks.

Another notable innovation is that KLEE uses about 2500
lines of C code to implement simple models that understands
the semantics of the desired action of roughly 40 system calls.
This enables KLEE to redirect system calls to these models
such that it has a better support of the environment modeling.

Besides, there are some other optimizations performed by
KLEE.

1) Compact state representation: KLEE tracks all memory
objects, it can implement copy-on-write at the object
level rather than page granulaity, which significantly
reduces the memory usage.

2) Query optimization: KLEE performs a series of simplifi-
cation on expressions before sending to constraint solver,
including constraint set simplification, implied value
concretization, constraint independence, and counter-
example cache.

3) State scheduling: Two searching heuristics are used by
KLEE when selecting the state to run. Firstly, random
path selection enables KLEE to reach uncovered code
with higher possibilities, and avoids state explosion
caused by tight loop containing a symbolic condition.
Secondly, coverage-optimized search uses heuristics to
compute a weight for each state and then randomly
selects a state according to these weights, making it more
likely to explore new coverages.

Aside from the four papers reviewed above, SAGE [11] and
S2E [7] are also representative research efforts on concolic
execution.

III. HYBRID FUZZING: FUZZING + CONCOLIC EXECUTION

A more recent trend of concolic execution research is to
integrate it with fuzzing techniques. In this direction, two
insightful papers, QSYM [8] and SymCC [9] are reviewed.

At a high level, every implementation of symbolic execution
can be illustrated as Figure 4. In details, QSYM and SymCC
takes two different approaches to implement the constraint
generation process.

Execution environment

Prosgram under test

Symbolic backend

IR

Constraints

N Symbolic execution framewaork

Test cases

Fig. 4. The building blocks of symbolic execution. The entire system may
be encapsulated in a component that handles forking and scheduling [9].

A. QSYM

QSYM [8] introduces a tool combining fuzzing with con-
colic execution. The main idea behind QSYM is to tightly
integrate the symbolic emulation with the native execution
using dynamic binary tranlation, making it possible to imple-
ment more fine-grained, so faster, instruction-level symbolic
emulation.

At a high level, QSYM design can be illustrated by Figure
5 (IR-less), while a more widely adopted design of concolic
execution engine can be illsutrated by Figure 6 (IR-based).
A major difference between QSYM and those more widely
adopted concolic engines like KLEE is that QSYM eliminates
the IR layer in between source code and constraint generation.

Solver Constraints

z3“ 5
Q‘Cg

Hooking

Analysis engine

L

Test cases Symbolic execution framework

Fig. 5. IR-less symbolic execution attaches to the machine code executing
on the CPU and instruments it at run time [9].

Symbolic execution framework

Solver

Z3

IR interpreter

QcQ«

Constraints ¥

store 132 %new_resul
i32+ %result_a

IR lifter

Test cases

Fig. 6. IR-based symbolic execution interprets IR and interacts with the
symbolic backend at the same time [9].

Specifically, QSYM outlines three main performance issues
faced by conventional concolic executors used for hybrid
fuzzers, and proposes their solutions to each of them.

1) Slow symbolic emulation: Adopting IR makes emu-

lator implementation easy, but it introduces additiona
overhead. Meanwhile, IR blocks further optimization or
granularity of symbolic execution, most concolic execu:
tors treat basic blocks as the lowest possible level o
performing concrete or symbolic execution, introducing
some redundant overhead on instructions that don’t neec
symbolic execution.
Solution: Remove the IR translation layer, perform
constraint generation on machine code directly. Insteac
of symbolic execution on basic block level, perform
symbolic execution on instruction level with the hely
of taint analysis.

2) Ineffective snapshot: Snapshot is a way of implementing
state forking in concolic execution. When integrated

- =

with fuzzing, there are two notable issue with snapshots:
1. fuzzing input does not share a common branch since
fuzzer may frequently go explore other paths whenever
a path stuck, this makes it impossible to reuse snapshots.
2. snapshots cannot reflect external status such as inter-
actions with file systems.

Solution: Remove the snapshot mechanism and perform
re-execution when taking different branches. This ap-
proach sacrifices time for space, but turns out to be
efficient enough for real-world application.

3) Slow and inflexible sound analysis: While sound analy-

sis is a critical concept in symbolic execution, it in fact
introduces never-ending analysis for complex logic, and
could over-constraint a path. As an example shown by
Figure 7, if attempts to solve all constraints at line 2
for soundness, the fuzzer may miss the interesting code
starting from line 7.
Solution: Collect an incomplete set of constraints for
efficiency and solve only a portion of constraints if
a path is overly-constrained. This introduces the risk
of generating concrete inputs that don’t really cover a
execution path, but it is acceptable under the setting of
fuzzing, since fuzzer treats these inputs as just regular
unsuccessful fuzzing attempts.

// @funcs.c:221 in file v5.6

I
2 if ((ms->flags & MAGIC_NO_CHECK_COMPRESS) == 0) {

3 m = file_zmagic(ms, &b, inname); // zlib decompress
4 ven

5}

6

7 // other interesting code

Fig. 7. Collecting complete constraints for complicated routines such as
file_zmagic() could prohibit finding new paths [8].

B. SymCC

SymCC [9] has a key contribution on introducing the benefit
of integrating concolic execution by compilation rather than
performing it by interpretation. At a high level, the design of
SymCC can be illustrated by Figure 8.

Binary execution

1= w Compilation to IR

C,C_} %new_result = add ns /')
store 132 %new_resul Code
i32+ %result_a genel‘atlon
Bitcode
instrumentation @
pass

Test cases

Fig. 8. Compilation-based approach compiles symbolic execution capabilities
directly into the target program [8].

SymCC introduces compilation-based symbolic execution,
which differs from both conventional IR-based and IR-less
symbolic execution. To compile symbolic execution capabili-
ties into a target program, SymCC implements the symbolic
backend into a library that can be used by the target program,
and it instruments the source code with calls to entry points
of the library.

IV. SUMMARY

Symbolic execution, while powerful, is hindered in practice
by four critical challenges: memory modeling, environmental
interaction, state space explosion, and constraint solving. Over
the years, multiple tools have proposed targeted solutions to
these problems. Table I summarizes how the six representative
research works reviewed by this paper tackle each challenge.

TABLE I
SUMMARY OF HOW TOOLS ADDRESS THE FOUR MAIN CHALLENGES OF
SYMBOLIC EXECUTION

Tool Memory Environment State Space Constraint Solving
T .

DART Symbolic variables Models external Uses dynamic test Uses Ip_solve;
mapped to memory functions with generation and handles simple
addresses; initialized nondeterministic depth-first path predicates
to NULL or random return values exploration

CUTE Uses memory graphs; | Same as DART DFS for path Ip_solve;
separates pointer vs exploration pointer/integer split
integer constraints

EXE Bitvector-based Limited real-world DFS + best-first Optimizations:
symbolic memory; modeling heuristics caching,
fast memory independence, reuse
reads/writes

KLEE Compact memory Models 40+ syscalls Coverage-optimized Simplification,
tracking with via C stubs + random path search | concretization,
copy-on-write caching

QSYM Instruction-level taint | Re-execution avoids Light path Partial solving for
tracking; no IR stale snapshots exploration; partial efficiency

constraints accepted

SYMCC | Compile-time Tight system Fast fork-free Efficient constraint
instrumentation; integration execution collection at compile
symbolic library time
hooks

While significant

V. FUTURE DIRECTIONS

progress has been made in symbolic

execution and its hybrid variants, several open challenges
remain:

Scalable constraint solving: Even state-of-the-art solvers
struggle with complex path constraints, especially in-
volving non-linear arithmetic or heap-based structures.
Future work could investigate domain-specific solvers or
approximations that retain soundness guarantees.
Real-world system modeling: Symbolic executors still
fall short in accurately emulating complex system in-
teractions (e.g., file systems, networks). Building more
comprehensive models or integrating virtualization may
help bridge this gap.

Intelligent path selection: Current heuristics are limited;
integrating ML-guided search strategies could prioritize
more semantically meaningful paths.

Hybrid fuzzing synergy: Hybrid fuzzers like QSYM and
SYMCC show promise, but integrating coverage feed-
back, path prioritization, and mutation strategies more
deeply remains underexplored.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

Parallel and distributed execution: Path exploration can
be embarrassingly parallel. Architectures that support dis-
tributed symbolic execution could scale better on modern
hardware.

REFERENCES

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. “SELECT
— A Formal System for Testing and Debugging Programs by Symbolic
Execution.” In Proc. of Int. Conf. on Reliable Software. ACM, 234-245.
https://doi.org/10.1145/800027.808445

William E. Howden. 1977. “Symbolic Testing and the DISSECT Sym-
bolic Evaluation System.” IEEE Trans. on Software Engineering (TSE)
3, 4 (1977), 266-278. https://doi.org/10.1109/TSE.1977.231144
Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. “KLEE:
Unassisted and Automatic Generation of High-coverage Tests for Com-
plex Systems Programs.” In Proc. 8th USENIX Conf. on Operating
Systems Design and Implementation (OSDI’08). USENIX Association,
209-224.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. “CUTE: A Concolic
Unit Testing Engine for C.” In Proc. 10th European Software Engi-
neering Conf. Held Jointly with 13th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering (ESEC/FSE’13). ACM, 263-272.
https://doi.org/10.1145/1081706.1081750

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. “DART:
Directed Automated Random Testing.” In Proc. ACM SIGPLAN

Conf. on Prog. Lang. Design and Impl. (PLDI’05). 213-223.
https://doi.org/10.1145/1065010.1065036
Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.

Dill, and Dawson R. Engler. 2006. “EXE: Automatically Gen-
erating Inputs of Death.” In Proc. 13th ACM Conf. on Com-
puter and Communications Security (CCS’06). ACM, 322-335.
https://doi.org/10.1145/1180405.1180445

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012.
“The S2E Platform: Design, Implementation, and Applications.”
ACM Trans. on Computer Systems (TOCS) 30, 1 (2012), 2:1-2:49.
https://doi.org/10.1145/2110356.2110358

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, Taesoo Kim. 2018.
“QSYM: a practical concolic execution engine tailored for hybrid
fuzzing.” SEC’18: Proceedings of the 27th USENIX Conference on
Security Symposium. 745-761.

Sebastian Poeplau, Aurélien Francillon. 2020. “Symbolic execution with
SYMCC: don’t interpret, compile!” SEC’20: Proceedings of the 29th
USENIX Conference on Security Symposium: 11, 181-198.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, Irene Finocchi. 2018. “A Survey of Symbolic Execution Tech-
niques.” ACM Computing Surveys (CSUR), Volume 51, Issue 3: 50,
1-39 https://doi.org/10.1145/3182657

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008.
“Automated Whitebox Fuzz Testing. In Proc. Network and Distributed
System Security Symp.” (NDSS’08).”

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. “SOK:
(State of) The Art of War: Offensive Techniques in Binary Anal-
ysis.” In IEEE Symp. on Security and Privacy (SP’16). 138-157.
https://doi.org/10.1109/SP.2016.17

